
AD-ALDO 662 SCORB1A INST OF TECH ATLANTA SCHOOL OF INFORMATION AETC F/6 l~
STATISTICAL MEASURES OF SOFTWARE RELIABILITY. (U)
OCT 80 R A DPINILLO, F 6 SAYWARD N0001-79-C-0231

UNCLASSIFIED T-ICS-80/IO NLMENOMONEE

IIIIIIIII

LEVEL

School of
~~tnformattom and Compt

(EORGIA--.,NS5iUTE

OF TECHNOLOGY
81 6 26 038

GIT- ICS-80/1 0'

SjTTISTICL MEASURES OF SOTWARE RELIABILITY.

Richard A. 'DeMillo

Frederick G. Sayward

//

//

LMPRovm- roi Pr-c Rzrjx&

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

Computer Science Department
Yale University
New Haven, Conn. 06520

Work supported in part by Office of Naval Research, Gran IN00014-79-C-0231

?(;

_~J'\~ _

-wV

STATISTICAL MEASURES OF SOFTWARE RELIABILITY

Richard A. DeMillo
Georgia Institute of Technology

Frederick G. Sayward
Yale University

1. INTRODUCTION

Estimating program reliability presents many of the same problems as

measuring software performance and cost: the central technical issue con-

cerns the existence of an independent objective scale upon which may be

based a qualitative judgement of the ability of a given program to function

as intended in a specified environment over a specified time interval.

Several scales have already been proposed. For example, a program may be

judged reliable if it has been formally proved correct [1], if it has been

run against a valid and reliable test data set [], or if it has been

developed according to a special discipline [3].>While these concepts may have

independent interest, they fail to capture the most significant aspect of

reliability estimation as it applies to software: most software is unreliable

by these standards, but the degree of unreliability is not quantified. A

useful program which has not been proved correct is unreliable, but so is,

say, the null program (unless by some perversity of specification the null

program satisfies the designer); an operationally meaningful scale of

reliability should distinguish these extremes.

What is needed is a measure R(t) which, for a given piece of software

(i.e., a system, subsystem, program, or program module) gives an index of

operational reliability in the time interval [O,t]. The most commonly

proposed such index is the reliability function of traditional reliability

theory [4,5,6]:

2

R(t) = "probability" of survival at time t.

In the sequel, we will sketch the outlines of the traditional theory that is

most relevant to software reliability estimation, give a brief critical

analysis of the use of the traditional theory in measuring reliability, and

describe another use of the R(t) measure which we believe more closely fits

the intuitive requirements of the scale we asked for above.

2. THE STATISTICAL THEORY

R(t) is to be interpreted as the probability of satisfactory performance

of the system in the time interval [O,t]. It is an underlying assumption that

satisfactory performance at time t implies satisfactory performance in the

interval [O,t]. A second assumption is that the form of the theory does not

change from system to system; in particular, it should not matter whether one

estimates R(t) for a total system, a subsystem, or a single component.

The second assumption suggests the following analysis of complex

systems. Let Ri be the reliability function for the ith component of the

system and define a random variable xi for each component as follows.

fl, if Ri(t)- ai

V, otherwise

The performance of the system is then determined by a 0-1 valued function

I xn).

Simple examples of such performance functions are the functions for series

systems, ,

(.... XlX 2 .I x n = min{xilin ,

and for "parallel" systems, ",,

,(x I..... x) l-(l-xl)...(l-xn) max{x i i-nI.

n l n/

I i i i l l i l I I rI i _ , , i . ..

3

For more complex situations, one may place additional requirements on the

performance function; for instance, the function may have to be coherent:

for all i, xi yi (Y...) (Xl X

The reliability function for the entire system is then

R z Prob ,(xI' IXn = .

n

For extremely simple models of subsystems failure (e.g., fixed independent

probabilities of satisfactory performance) such an analysis gives the

combinatorial probabilities of success/failure in a very handy form.

For realistically complex systems, however, R(t) is determined by

probability distribution which draw their properties from observable parameters

of the system. For computer programs, as well as many other systems, it is

inconvenient to estimate satisfactory performance directly. Instead one

uses the observed failures of the system. Let F(t) be the failure distribution

of the system and let f be the corresponding probability density function.

Then

R(t) = 1-F(t) = f f(y)dy.

Often, the reliability distribution is more conveniently expressed in terms

of the failure rate (or hazard rate). Let B(t,h) represent the conditional

probability of failure by time t+h given survival at time t:

r(t) - lim 13(t,h)/h = f(t)/R(t)

h-0

The failure rate determines the reliability since

1-1(t) P(t) exp(-j' t r(y)dy). 0J

4

On.A obtains a reliability function for a given system by a variety of

paths: nontechnical consideration;3 like mathematical tractability, empirical

observations, or theoretical analysis of more fundamental properties of the

system which is subject to failure.

The exponential distribution. The exponential distribution is exactly

characterized by those systems which have constant failure rate.

R(t) = exp(-Ot)

r(t) = i exp(-0t)/exp(-Ot) = u.

The exponential distribution is the most widely used of the reliability models,

even when there is slight evidence to justify its use. It is, of course,

amiiorig the ,iost tractable of the statistical models, but it can lead to serious

errors when the underlying distribution corresponds to failures that do not

occur randomly or which depend on the past history of the system. The

popularity of the exponential distribution (and the tendency to observe it in

complex systems) is no doubt due in part to the following fact. Let R. be the

reliability of the ith component and let R = PR.. If there are N components*1

in the system, define r(N) to be rl(O)+...+rN(O). Then R tends to be an

exponential distribution:

R(t) -, exp(-r(N)t) as N

whenever three technical conditions are met-

1. each failure rate grows as

r.(t) = ri(O) + a f

as t 0.

2. r(N) - as N

3. r(N)(a.+...+a) s bounded by a fixed constant.

L o r(.

5

These conditions are however not easy to satisfy, and several of the most

common distributions of reliability theory fail one or more of the

restrictions.

The Weibull distribution. In an attempt to circumvent the more serious

deficiencies of the exponential distribution, one is led to a family of dis-

tributions in which the failure rate is a function of time.

R(t) = exp(-t a/o),

r(t) = ata-]/,.

Obviously, the failure rate is increasing or decreasing depending on the

value of a. The properties of the R(t) distribution for certain choices of

a and - make it a good descriptor of mechanical "breakdown" phenomena, such

as failures due to metal fatigue or other failures due to stress. The Weibull

distribution varies wildly from the exponential distribution in its

statistical properties (compare, for example, the nth moments of both) and

thus cannot be used interchangeably with predictable results. A special case

of the Weibull distribution called the Rayleigh distribution is common in

software reliability studies. This class of distributions fails to satisfy

restrictions (1) and (3) above, so that it is difficult to argue that

interconnections of Rayleigh-distributed components may behave with simpler

failure rates.

Truncated normal distribution. The failure rate that is most commonly

cited as applicable to software lifecycles is the so-called "bathtub" curve

r(t)

time
t

6

As opposed to the Weibull-type distributions, the normal distributions model

systems which "wear out", e.g., light bulbs. Rather than dealing directly

with the reliability functions which may only be applicable to a portion of

the system life cycle, it is often convenient to combine several failure

rates to model modes of failure which apply to specific stages of development.

The wear-out models are particularly attractive in this regard. During the

initial stages of operation of a large number of copies of identical systems,

there is a hiyh incidence of immediate failures ("infant mortality"). This

initiation process is followed by a relatively stable steady-state region

until, near the end of the useful lifetime of the systems, the incidence of

failures rises.

If (x) is the probability density function for a normal distribution and

.(x) is the corresponding distribution function, then even though the

expression for R(t) involves an integral that cannot be expressed in closed

form, the failure rate is easily expressed:

r(t) = a ,(at-t)/r:i(at).

Renewal theory. A common application for the reliability theory sketched

ab.-ve is in the prediction of cost of operation as the system functions within

some prescribed maintenance policy. By knowing statistical properties of

operational periods (e.g., such statistics as mean time between failure) and

repair periods (e.q., replacing a failed component reduces the number of

failed components by one) a variety of useful system parameters can be

calculated. In concert with system design and maintenance policies (for

example, survivability may be insured by redundancy and repair effort

reduced by keeping a stock of spare parts) standard optimization models can

be used to minimize total operating costs due to failure. The mathematics

of the optimization techniques dictates very simple statistical models for

these applications. Among the simplifications which seem to be essential

one frequently finds:

1. failures are immediately detectable and attributable to a

single component,

2. during periods of reduced operation the remaining load is

shared by the rest of the system,

3. the renewed system and its predecessor have identically

distributed failures.

SOFTWARL MODELS

The descriptions of extant software models presented here are obtained

trom the DACS summaries [7]. Although a wide variety of models are covered

in the DACS extracts, we will highlight those which fall within the time-

dependent reliability models of the traditional theory. The following

developmental chart illustrates the use of these models.

D SIGN/IMPLEMENT i DETERMINE BUGS -PREDICT OPERATIONAL
FAILURES

. . . .i. .. . T+t time

At time T in the lifecycle of the software system, the statistical

model is determined, usually by controlled observations of system errors

\the "failures" of the traditional theory). In the interval [T,T+t] enough

'lata is to be (lathered to determine a failure rate r(t). This coupled

with a variety of subjective evidence concerning the behavior of the system

in operation then determines an estimate of the underlying fa-lure dis-

trihution. The predictive model is then applied in the interval [T+t,T+t+k],

8

where k is a "regenerative" time less than the operational lifetime of the

sys temn.

The following table summarizes the utilization of the traditional

models summarized in [7].

Distribution Number of Models

Exponential (incl. geometric 7
and Poisson)

Rayleigh or Weibull 3

Normal I

As described above, the Exponential-Weibull distributions describe system

failures when the system components are stressed materials. While there may

be a body of experimental data which fits the appropriate failure rate

functions, the assumption of one of these distributions as the underlying

reliability distribution forces one or more of a number of questionable

assumptions concerning errors in software. For example:

1. The number of initial program errors can be reliably estimated.

2. Error detection rate (failure rate) is proportional to the

number ,)f remaining errors.

3. Errors are discovered one at a time.

4. Once an error is detected, it can be located and removed immediately.

5. Error occurrence rate is constant.

6. Removing an error reduces the total number of errors by one.

7. Error occurrences are statistically independent.

8. The distribution of program inputs is known.

9. Error detection rate is proportional to the debugging effort.

10. Proqram size is constant over the lifetime of the program.

The exponential evidence to support these assumptions is contradictory [8].

Common sense would suiqest that statistical models intended to describe

physical systems would be ill-adapted to software, but it is still possible

that nature allows an aggregate description of the error occurrence rate

in typical software that is useful in practice. One test of this is careful

experimentation on the assumptions 1-10. Allen Acree of the Georgia Tech

lestinq Laboratory nas, for instance, gathered extensive data [9] on failure

rates as related to the number of remaining errors in small programs

(50-I006 lines) and found that it does support the exponential rate. In

other studies by Acree and Timothy Budd of the Yale Testing Laboratory,

however', [9,10] there is rather clear evidence that the strategic

assumptions of independence of errors, single error occurrence, and

immediate removal fail drastically in even moderately large systems. There

is also considerable evidence that for large systems, most remaining errors

lie in unexecuted portions of code, which means that failure rates cannot

depend on either number of remaining errors or debugging effort for these

f ys telIs.

Certain of the remaining assumptions also appear hard to confirm. For

ex:u'.ple, there is no methodologically acceptable way of estimated initial

error percentages. The most commonly proposed technique is the error

seedin~i procedure described in [11], which is based on the population

stati!,tics calculations described in Feller's classic text [12]. While this

procedure gives the best unbiased estimator for certain random populations,

it. (an badly overestimate or underestimate the number of errors when there

is nonrandom mixing of seeded and natural errors. There is experimental

evidence that such nonrandom mixing must take place 9,10].

10

Finally, the use of the Rayleigh or Weibull distributions to model

pro(irams modules presents severe mathematical difficulties for macro-modellins,

since these distributions are nonreproductive; that is, overall system

description is not a simple aggregate of module descriptions.

The usual validation of these models is the posterior observa ,on

of failure rates and costs [14]. The experimental technique is defiuient

and lacks some essential size constraints to allow statistical sampling

techniques to be used with acceptable confidence. Studies aimed at

validating these models have led to even more confusion:

E-asically, the results of the goodness-of-fit tests and other
aspects of the data analysis indicate that none of the models
fit very well...the various data sets showed obvious tendencies
to increasing (in time) error rates: more or less contrary to
the model assumption that mean error rates should be nonincreasinq.
It also seems clear to us that the observed increasing error rate
situation cannot simply be written off as due to the introduction
of errors during the debugging process or due to chance... the
data sets themselves have some problems of a nature unknown to
us...with better data more fits might have been obtained.[14;p.5-61].

Another set of difficulties has been clearly enunciated by Littlewood

see [15]): "we should be extremely careful of replacing the wealth of

information in a probability distribution with simple summaries - whether

these be parameters or moments of the distributions." In a sense,

tittlewood's criticisms are even more fundamental than those attained

above since they go to the heart of the matter - the correct interpretion

of the statistical theory.

4p

10

Finally, the use of the Rayleigh or Weibull distributions to model

programs modules presents severe mathematical difficulties for macro-modelling,

since these distributions are nonreproductive; that is, overal system

description is not a simple aggregate of module descriptions.

The usual validation of these models is the posterior observation

of failure rates and costs [14]. The experimental technique is deficient

and lacks some essential size constraints to allow statistical sampling

techniques to be used with acceptable confidence. Studies aimed at

validating these models have led to even more confusion:

Basically, the results of the goodness-of-fit tests and other
aspects of the data analysis indicate that none of the models
fit very well...the various data sets showed obvious tendencies
to increasing (in time) error rates: more or less contrary to
the model assumption that mean error rates should be nonincreasing.
It also seems clear to us that the observed increasing error rate
situation cannot simply be written off as due to the introduction
of errors during the debugging process or due to chance... the
data sets themselves have some problems of a nature unknown to
us...with better data more fits might have been obtained.[14;p.5-61].

Another set of difficulties has been clearly enunciated by Littlewood

(see [15]): "we should be extremely careful of replacing the wealth of

information in a probability distribution with simple summaries - whether

these be parameters or moments of the distributions." In a sense,

Littlewood's criticisms are even more fundamental than those attained

above since they go to the heart of the matter - the correct interpretion

of the statistical theory.

11

If, indeed, the classical theory can be imported to software reliability

there must be considerable attention paid to deriving relevant distributions

from first principles and to developing the appropriate experimental and

data gathering [12] techniques. It should be noted, however, that software

errors must be viewed as design errors [8] (since there is no material wear-

in(; or, stressing) and classical reliability theory does not deal satisfactorily

with design errors.

Whatever the final resolution of these difficulties, it seems to us

that there is no way around them. Estimations of reliability based on

incorrect models, statistics improperly applied, or fuzzy notions of

'error" can have unboundedly pernicious behavior - if the model doesn't

fit there is simply no way to tell!

4. CONFIDENCE ESTIMATION

In a sense, the goals of traditional reliability theory and software

reliability measurement are fundamentally at odds with each other. We have

little opportunity to create large populations of identical systems and

observe failure rates to obtain statistically meaningful measurements of

failure distributions as indications of relative frequencies.

The more common situation is that a fixed programming-testing-

validation method is imposed with a certain confidence level. The actual

reliability of the system is then intertwined with this estimate of the

system's reliability (since we stop testing when our estimate is satisfied).

We should then ask for experiments to confirm the level of confidence

in the chosen methodology. In traditional statistical approaches to

reliability, such objectively obtained parameters as number of error

observed per unit time are used to infer the appropriate distributions.

12

We suggest that the observable pcrameters represent instead a varying

quantity which represents a prior estin,-te of reliability. That is, we

use a function r(R) to represent our level of confidence in the

reliability level R of the software. For example, a program that has been

subjected to mutation analysis [13] might be described by a function r

with the shape shown below.

r(R)

R

0.5 1.0
reliability

It is important to note that r(R) is merely a quantitatively assessed

judgement; it is not necessarily an objective probability obtained by

classical techniques. The r function may, however, be based on solid

evidence and may form the basis for a scientific hypothesis concerning the

lonq run behavior of a system. By applying Bayes' theorem [11], it is

possible to gather "hard" evidence to support or deny the estimate of

confidence r(R). From now on, we treat R as a random variable with

probability density function r(R).

Suppose that in an experiment designed to refute a given reliability

ievel R we make a large number of observations and gather a statistic, say,

x, which is distributed as E(xIR) for a given level R. Think of E as

a distribution of errors for a given reliability; this is a quantity which

can be observed and inferred in a given programming environment. The

joint distribution for x and R is F(x,R). Let the associated pdf's

13

be e and f, so that

f(x,R) = r(R)e(xlR),

the marginal density for x is:

g(x) = R r(R)e(x R)dR.

Then the conditional distribution for R is given by the density

h(Rix) = r(R)e(xlR)/g(x),

which represents our level of confidence in R given the results of the

experiment yielding x.

Even though these results merely restate Bayes' theorem, the inter-

pretation implied by the results of the experiment yielding x is not

necessarily subjective. The key is rather in the degree of objectivity

with which r(R) is obtained.*

At the heart of this treatment of software reliability is another

view of the role of statistical statements. This point of view rejects the

idea that a meaningful probability of correct operation can be assigned

to a piece of software. Rather, any such assessment must be interpreted

as a "level of confidence" in the process used to validate the program.

This effectively shifts the statistical burden from the program to the

methodology used to produce and validate it. One problem with the traditional

approach, which we noted briefly above, is that there is no acceptable sense

in which the frequency interpretation of the reliability function R(t) can

apply to software; there is, for example, no reasorable application of the

cf. Feller's criticism of Bayesian analysis in reliability [12, p.124].

14

law of large numbers to obtain failure rates. This view of probability --

the limit of a physically observable relative frequency -- is not the

only view. It is possible to construct alternative subjective probabilities.

In fact, James Bernoulli in 1713 described probabilities as "degrees of

confidence."

Even though we use the term "subjective" in describing the non-

frequency version of R(t), it does not follow that the measure represents

an ad hoc assessment of reliability. For example, the prior distribution

may not really represent a subjective estimate of reliability. It may be

the result of experimental research and summarization. This suggests an

iterative procedure for "updating" the state of knowledge regarding the

reliability of Lhe validation methodology.

Littlewood [15] also adopts the Bayesian approach - with an important

extension to the software design phase. For essentially the reasons

outlined above Littlewood also rejects the frequency interpretation of

R(t). He goes farther, however, in exploiting the ability of Bayes'

theorem to update previous reliability measurements in light of new

data: "periods of failure-free working cause the reliability [i.e.,

confidence] to improve... it is interesting to compare this with the

[traditional methods in which].. .reliability improvements can only take

place at a failure, since it is only at such a time that an error can be

removed." [15]. This, Littlewood cites as a contradiction to the common

sense approach to estimating software confidence - namely, that there is

no a priori reason that confidence should increase as failures occur.

In other words, an assessment of reliability represents a judgement

relative to a prior reference "standard" which the user presumably under-

15

stands, believes, and against which he is being required to wager.

A useful reliability theory then should incorporate notions which

are so far untouched. For example, an economic theory that develops

a concept of utility for software would be extremely helpful. Hence,

for the reliability measurement to be useful, it must only order

uncertain events so that the user may consistently win when he adopts a

rational betting strategy [16].

REFERENCES

[1] Z. Manna, Mathematical Theory of Computation, McGraw Hill, 1974.

[2] S. Gerhart and J. Goodenough, "Toward a Theory of Test Data Selection,"
in R. Yeh (Editor), Current Trends in Programming Methodology: Vol. 2,
Program Validation, Prentice Hall, 1977, pp. 44-79.

[3] E. Dijkstra, A Discipline of Programming, Prentice Hall, 1977.

[4] K.C. Kapur and L.R. Lambertson, Reliability in Engineering Design,
Wiley, 1977.

[5] M. Zelen (Editor), Statistical Theory of Reliability, University of
Wisconsin Press, 1964.

[6] R.E. Barlow and F. Proschan, Mathematical Tieury of Reliability,
Wiley, 1965.

[7] DACS, Quantititive Software Models, March 1979.

[8] R. Longbottom, Computer System Reliability, Wiley, 1980.

[9] A.T. Acree, "On Mutation," PhD Thesis, School of Information and
Computer Science, Georgia Institute of Technology, June 1980.

[10] T.A. Budd, "Mutation Analysis of Program Test Data," PhD Thesis,
Department of Computer Science, Yale University, June 1980.

[11] T. Gilb, Software Metrics, Prentice Hall, 1978.

[12] W. Feller, An Introduction to Probability Theory and Its Applications,
Vol. 1, Wiley, 1968.

[13] A.T. Acree, T.A. Budd, R.A. DeMillo, R.J. Lipton, and F.G. Sayward,
"Mutation Analysis," Report GIT-ICS-79/08, School of Information and
Computer Science, Georgia Institute of Technology, Atlanta, Georgia
30332.

V.j

[14] R.Schater, et.al., "Validation of Software Reliability Models,"
RADC-TR-79-147, Rome Air Development Center, June 1979.

iV. Littlewood, "Sftware Reliability Measurement, Some Criticisms
and Suqqestions,", Presented at the Software Life Cycle Management
Workhop, ?1-?. Auqust 1977, pp. 473-488.

[161 M. [)eG,'out, 1)ptidl Statisticdl De-cisions, McGraw-Hille, 1970.

Statistical Models of Software Reliability

Rich DeMillo and Fred Sayward

Martin Shooman, Polytechnic Institute of NY: You mentioned that some of

the people working in the reliability modelling area compiled data

that showed that some modelling assumptions were false and had tried

to explain this away by finding fault with the data. Can you cite

some of the data? I'm not aware of any such studies.

Rich DeMillo: I don't remember the title of the report, but it was

a June 1979 RADC report on validating reliability models. I'll be

happy to send you the citation.

Shooman: Do you know the author?

DeMillo: No, no, I really don't know the author.*

Shooman: ilve worked in this area for over ten years and I don't know that

that's so, so I'm a little puzzled...

DeMillo: (Assenting noise.)

Fred Sayward: One thing I might mention is that in all of the material I've

seen in this area, there has been very little work done on using

standard statistical tests to validate distributional assumptions.

That seems to be a missing ingredient, and there are standard tests,

like the chi square test and tests of that nature.

DeMillo: The Rome study analyzed a large mass of reliability data, some

of it from internal Hughes Aircraft projects. The deficiencies of the

data are discussed in the paper.

Shooman: Yeah, I think you're talking about a study that was done at

The report is RADC Report TR-79-147, "Validation of Software Reliability
Models" by R.E. Schafer, J.E. Angus, J.F. Alter, and S.E. Emoto, of
Hughes Aircraft.

2

Rome by Allan Soo . A lot of the data did not have basic parameters

on time when certain failures occurred and other necessary data.

These are necessary for some of the models which John Musa calls

execution-time models. These models have been validated by other

sets of data. Also, rather than make statistical tests, some people

have made estimates. Then they have made neasurements later when

the software was placed into use. The estimates agreed to within

twenty, thirty percent of the actual usage measurements. That's a

rather strong proof that there is some validity to the model. One

of the big problems in this as in other areas is that, it's very

difficult and costly to gather data. So, rather than, say that the

models are invalid because they haven't been validated, I think you

should look at some of the studies where they have been validated.

Sayward: Any further questions, or comments?

Merv Muller, World Bank: It's a comment. I think I've made it before to

the panel. I get very uncomfortable when I hear people who are

testing models using chi squared tests. The problem of chi squared

is you don't know what the alternative is. It's every other possible

point in the parameter space of all possible models that you could

ever have thought of. It's obvious if you don't take very much data

you will most likely accept the fact that you don't have enough data,

or you might accept a model and you could take too much data. I don't

care what the model is, you'll reject it. All you need to do is go

back and look at the Rand studies in the late 1940's on trying to

test randomization. They put out a big thick book, and they ran

many, many tests. What they really came down to on the bottom line was

3

they couldn't come to any conclusion because the theory is lacking.

And others have tried to adjust the chi square test for the fact

that you have an interval of possibilities. If you insist that there's

a single point (I don't care what distribution it is) you're

ultimately going to reject it because you don't know what the power

of the test is: you don't know what you're comparing it to. I

think it would be a pity if we got hung up over a statistical test

that we've developed for a certain class of statistical analysis. I

like what Shooman said. I think the purpose of using data is)t to

test, but to try to estimate something.. .whatever that may be, because

you're interested in the future. I may have worn out my welcome on

this, but there is an inappropriate use of statistical techniques,

and I don't know whether they answer the question of the validity of

the model or not, but I would urge that people pay more attention to

statistical theory.

DeMillo: Let me ask a question of Martin Shooman, as long as he's here.

It seems to me that the general consensus among people who work in

engineering reliability theory is that the theory is just not well

adapted to design errors. Is it your contention that the errors that

you find in programs are not design errors, that they're somehow

equivalent to wear-out errors? Failure errors?

Shooman: Let me address the first statement. Each year at the annual

Reliability and Maintainability Symposium you see about, between seven

hundred and a thousand of these people. I regularly attend these

symposia and I don't find that to be true.

DeMillo: I'm talking now about the time-dependent theory.

4

Sho 11;Ir T: e jener-a ,oiI.,nsus among these people is not that

this doesn't, all right? What you find is that when you deal in

failure of any type you find various modes of failure. It is true

that in any failure of hardware the predominant mode of failure is

wear-out, an actual physical failure of the device. Although perhaps

you still find, perhaps ten percent of the modes of failure are

design errors. When you deal with software,the predominant modes

of failure are design errors. This in no way invalidates the basic

ap-roach. All it means is that you end up making different models.

True, your distributions may look different. But, in general, you're

dealing with a very simplistic model. It's somewhat invariant to the

distribution. People in a first-order model trying to fit data can

fit an exponential model, can fit a gamma model, and so on. Sure, you

way get errors of ten or twenty or thirty percent, but the techniques

for estimating the parameters of the models are no more accurate than

twenty or thirty percent, so the distribution is really not as importart

as how you're going to measure the parameters of the model. The

measurement techniques are crude enough so that even using a one-

parameter rather than a two-parameter model won't very much make any

difference in the results. The fact that software doesn't wear out is

well known to all modellers and they take thi- into account and they do

not use models which are based upon software wearing out.

hayward: OK. Would anyone else like to make a comment or have a question?

Irwin Nathan, Xerox: The problem is that you have a very complex system,

all kinds of subsystems, routines, and human interfacinq, and you

really can't find out what's going on. All you know is that at certain

intervals, which are randomly distributed, or distributed accordinq

to some probability distribution, that you're going to get failures,

and you can forecast that, and as you keep improving, and finding

these design anomalies, and correcting the failure rate gets

lower and lower. You eventually get to the point where you can tolerate

it, OK? That's essentially what you do in hardware systems. Tolerate

it. There are a number of design errors, and there are a number of

components which are probably exceeding some design limit, in some

way, and there's a few components that are wearing out. And you

add all these things up, and you take a macro look at it, and you say,

it's a constant failure rate (or whatever you have). And the same thinq

is probably true with software, based on what we have done up to date.

Arid I think that's where the situation is as far as software reliability

is going: to try and estimate those parameters. At least you know

where you are, and you can have some statement of probability of

success for a system which is going to operate and evolve. It's only

when you get to the complex programs that it counts.

DeMillo: The communities that are involved in reliability estimation and in

program testing should have a lot to say to each other. The assumptions

that I chose for this slide (pause) have been addressed by a number of

studies in program testing. I gather from your comments and Shooman's

comments, that in reliability estimation you take a very summary view of

the failure process. In proqram testing we take a microscopic view of

the process. The observations that we get through program testing are

fundamentally at odds wit! the assumptions that are built into these

reliability models.

Voice: For instance, take the assumption of statistically independent

errors. Or constant program size.

6

Sayward: I was going to add that one common thing you find in program testing

is that most of the remaining errors are in code that hasn't been executed --

or even, in some cases, can't be executed, except under very bizarre

conditions. That's certainly not a continuous type of thing.

Defillo: I guess what I'm doing is suggesting a number of experiments.

The models, these time-dependent models, rise or fall on a given set

of assumptions, and I'm saying that those assumptions can be dealt with

empirically. Now, if we don't have adequate data to determine the

validity of an assumption, I think that we should put it together.

ATE

